If you are developing daemons to run on OS X, it is highly recommended that you design your daemons to be launchd
compliant. Using launchd
provides better performance and flexibility for daemons. It also improves the ability of administrators to manage the daemons running on a given system.
- Discouraged Workers Teen Version Mac Os High Sierra
- Discouraged Workers Teen Version Mac Os Catalina
- Discouraged Workers Teen Version Mac Os Download
- Discouraged Workers is a satirical story based on the popular Korean soap operas-styled plot. It compares Ga-Yeon’s bleak everyday life to the dark side of youth. As a hospital coordinator, Ga-Yeon fell in love.
- The Mac transition to Apple Silicon is the process of changing the central processing unit (CPU) of Apple Inc.' S line of Mac computers from Intel's x86-64 chips to Apple-designed chips that use the ARM64 architecture. CEO Tim Cook announced the two-year transition plan in his WWDC keynote address on June 22, 2020.
Mac OS 9: The last “Classic” Mac operating system. With Steve Jobs back in charge at Apple, the company began to work in earnest on a replacement for the dated operating systems. Jobs had spearheaded the move to a UNIX-based OS called NeXTSTEP while at NeXT, and when Apple purchased the company, it also brought over the basis for Mac OS X.
If you are running per-user background processes for OS X, launchd
is also the preferred way to start these processes. These per-user processes are referred to as user agents. A user agent is essentially identical to a daemon, but is specific to a given logged-in user and executes only while that user is logged in.
Unless otherwise noted, for the purposes of this chapter, the terms “daemon” and “agent” can be used interchangeably. Thus, the term “daemon” is used generically in this section to encompass both system-level daemons and user agents except where otherwise noted.
There are four ways to launch daemons using launchd
. The preferred method is on-demand launching, but launchd
can launch daemons that run continuously, and can replace inetd
for launching inetd
-style daemons. In addition, launchd
can start jobs at timed intervals.
Although launchd
supports non-launch-on-demand daemons, this use is not recommended. The launchd
daemon was designed to remove the need for dependency ordering among daemons. If you do not make your daemon be launched on demand, you will have to handle these dependencies in another way, such as by using the legacy startup item mechanism.
Launching Custom Daemons Using launchd
With the introduction of launchd
in OS X v10.4, an effort was made to improve the steps needed to launch and maintain daemons. What launchd
provides is a harness for launching your daemon as needed. To client programs, the port representing your daemon’s service is always available and ready to handle requests. In reality, the daemon may or may not be running. When a client sends a request to the port, launchd
may have to launch the daemon so that it can handle the request. Once launched, the daemon can continue running or shut itself down to free up the memory and resources it holds. If a daemon shuts itself down, launchd
once again relaunches it as needed to process requests.
In addition to the launch-on-demand feature, launchd
provides the following benefits to daemon developers:
Simplifies the process of making a daemon by handling many of the standard housekeeping chores normally associated with launching a daemon.
Provides system administrators with a central place to manage daemons on the system.
Supports
inetd
-style daemons.Eliminates the primary reason for running daemons as root. Because
launchd
runs as root, it can create low-numbered TCP/IP listen sockets and hand them off to the daemon.Simplifies error handling and dependency management for inter-daemon communication. Because daemons launch on demand, communication requests do not fail if the daemon is not launched. They are simply delayed until the daemon can launch and process them.
The launchd Startup Process
After the system is booted and the kernel is running, launchd
is run to finish the system initialization. As part of that initialization, it goes through the following steps:
It loads the parameters for each launch-on-demand system-level daemon from the property list files found in
/System/Library/LaunchDaemons/
and/Library/LaunchDaemons/
.It registers the sockets and file descriptors requested by those daemons.
It launches any daemons that requested to be running all the time.
As requests for a particular service arrive, it launches the corresponding daemon and passes the request to it.
When the system shuts down, it sends a
SIGTERM
signal to all of the daemons that it started.
The process for per-user agents is similar. When a user logs in, a per-user launchd
is started. It does the following:
It loads the parameters for each launch-on-demand user agent from the property list files found in
/System/Library/LaunchAgents
,/Library/LaunchAgents
, and the user’s individualLibrary/LaunchAgents
directory.It registers the sockets and file descriptors requested by those user agents.
It launches any user agents that requested to be running all the time.
As requests for a particular service arrive, it launches the corresponding user agent and passes the request to it.
When the user logs out, it sends a
SIGTERM
signal to all of the user agents that it started.
Because launchd
registers the sockets and file descriptors used by all daemons before it launches any of them, daemons can be launched in any order. If a request comes in for a daemon that is not yet running, the requesting process is suspended until the target daemon finishes launching and responds.
If a daemon does not receive any requests over a specific period of time, it can choose to shut itself down and release the resources it holds. When this happens, launchd
monitors the shutdown and makes a note to launch the daemon again when future requests arrive.
Important: If your daemon shuts down too quickly after being launched, launchd
may think it has crashed. Daemons that continue this behavior may be suspended and not launched again when future requests arrive. To avoid this behavior, do not shut down for at least 10 seconds after launch.
Creating a launchd Property List File
To run under launchd
, you must provide a configuration property list file for your daemon. This file contains information about your daemon, including the list of sockets or file descriptors it uses to process requests. Specifying this information in a property list file lets launchd
register the corresponding file descriptors and launch your daemon only after a request arrives for your daemon’s services. Table 5-1 lists the required and recommended keys for all daemons.
The property list file is structured the same for both daemons and agents. You indicate whether it describes a daemon or agent by the directory you place it in. Property list files describing daemons are installed in /Library/LaunchDaemons
, and those describing agents are installed in /Library/LaunchAgents
or in the LaunchAgents
subdirectory of an individual user’s Library
directory. (The appropriate location for executables that you launch from your job is /usr/local/libexec
.)
Key | Description |
---|---|
| Contains a unique string that identifies your daemon to |
| Contains the arguments used to launch your daemon. (required) |
| Indicates that your daemon requires a separate instance per incoming connection. This causes |
| This key specifies whether your daemon launches on-demand or must always be running. It is recommended that you design your daemon to be launched on-demand. |
For more information: For a complete listing of the keys, see the launchd.plist
manual page.
For sample configuration property lists, look at the files in /System/Library/LaunchDaemons/
. These files are used to configure many daemons that run on OS X.
Writing a “Hello World!” launchd Job
The following simple example launches a daemon named hello
, passing world
as a single argument, and instructs launchd to keep the job running:
In this example, there are three keys in the top level dictionary. The first is Label
, which uniquely identifies the job. when. The second is ProgramArguments
which has a value of an array of strings which represent the tokenized arguments and the program to run. The third and final key is KeepAlive
which indicates that this job needs to be running at all times, rather than the default launch-on-demand behavior, so launchd should always try to keep this job running.
Listening on Sockets
You can also include other keys in your configuration property list file. For example, if your daemon monitors a well-known port (one of the ports listed in /etc/services
), add a Sockets
entry as follows:
The string for SockServiceName
typically comes from the leftmost column in /etc/services
. The SockType
is one of dgram
(UDP) or stream
(TCP/IP). If you need to pass a port number that is not listed in the well-known ports list, the format is the same, except the string contains a number instead of a name. For example:
Debugging launchd Jobs
There are some options that are useful for debugging your launchd job.
The following example enables core dumps, sets standard out and error to go to a log file, and instructs launchd to temporarily increase the debug level of its logging while acting on behalf of your job (remember to adjust your syslog.conf accordingly):
Running a Job Periodically
The following example creates a job that is run every five minutes (300 seconds):
Alternately, you can specify a calendar-based interval. The following example starts the job on the 7th day of every month at 13:45 (1:45 pm). Like the Unix cron subsystem, any missing key of the StartCalendarInterval
dictionary is treated as a wildcard—in this case, the month is omitted, so the job is run every month.
Monitoring a Directory
The following example starts the job whenever any of the paths being watched have changed:
An additional file system trigger is the notion of a queue directory. The launchd daemon starts your job whenever the given directories are non-empty, and it keeps your job running as long as those directories are not empty:
Emulating inetd
The launchd daemon emulates the older inetd
-style daemon semantics if you provide the inetdCompatibility
key:
Behavior for Processes Managed by launchd
Processes that are managed by launchd
must follow certain requirements so that they interact properly with launchd
. This includes launch daemons and launch agents.
Required Behaviors
To support launchd
, you must obey the following guidelines when writing your daemon code:
You must provide a property list with some basic launch-on-demand criteria for your daemon. See Creating a launchd Property List File.
You must not daemonize your process. This includes calling the
daemon
function, callingfork
followed byexec
, or callingfork
followed byexit
. If you do,launchd
thinks your process has died. Depending on your property list key settings,launchd
will either keep trying to relaunch your process until it gives up (with a “respawning too fast” error message) or will be unable to restart it if it really does die.Daemons and agents that are installed globally must be owned by the root user. Agents installed for the current user must be owned by that user. All daemons and agents must not be group writable or world writable. (That is, they must have file mode set to
600
or400
.)
Recommended Behaviors
To support launchd
, it is recommended that you obey the following guidelines when writing your daemon code:
Wait until your daemon is fully initialized before attempting to process requests. Your daemon should always provide a reasonable response (rather than an error) when processing requests.
Register the sockets and file descriptors used by your daemon in your
launchd
configuration property list file.If your daemon advertises a socket, check in with
launchd
as part of your daemon initialization. For an example implementation of the check-in process, see SampleD.During check-in, get the launch dictionary from
launchd
, extract and store its contents, and then discard the dictionary. Accessing the data structure used for the dictionary is very slow, so storing the whole dictionary locally and accessing it frequently could hurt performance.Provide a handler to catch the
SIGTERM
signal.
In addition to the preceding list, the following is a list of things it is recommended you avoid in your code:
Do not set the user or group ID for your daemon. Include the
UserName
,UID
,GroupName
, orGID
keys in your daemon’s configuration property list instead.Do not set the working directory. Include the
WorkingDirectory
key in your daemon’s configuration property list instead.Do not call
chroot
to change the root directory. Include theRootDirectory
key in your daemon’s configuration property list instead.Do not call
setsid
to create a new session.Do not close any stray file descriptors.
Do not change
stdio
to point to/dev/null
. Include theStandardOutPath
orStandardErrorPath
keys in your daemon’s configuration property list file instead.Do not set up resource limits with
setrusage
.Do not set the daemon priority with
setpriority
Although many of the preceding behaviors may be standard tasks for daemons to perform, they are not recommended when running under launchd
. The reason is that launchd
configures the operating environment for the daemons that it manages. Changing this environment could interfere with the normal operation of your daemon.
Deciding When to Shut Down
If you do not expect your daemon to handle many requests, you might want to shut it down after a predetermined amount of idle time, rather than continue running. Although a well-written daemon does not consume any CPU resources when idle, it still consumes memory and could be paged out during periods of intense memory use.
The timing of when to shut down is different for each daemon and depends on several factors, including:
The number and frequency of requests it receives
The time it takes to launch the daemon
The time it takes to shut down the daemon
The need to retain state information
If your daemon does not receive frequent requests and can be launched and shut down quickly, you might prefer to shut it down rather than wait for it to be paged out to disk. Paging memory to disk, and subsequently reading it back, incurs two disk operations. If you do not need the data stored in memory, your daemon can shut down and avoid the step of writing memory to disk.
Special Dependencies
While launchd
takes care of dependencies between daemons, in some cases, your daemon may depend on other system functionality that cannot be addressed in this manner. This section describes many of these special cases and how to handle them.
Network Availability
If your daemon depends on the network being available, this cannot be handled with dependencies because network interfaces can come and go at any time in OS X. To solve this problem, you should use the network reachability functionality or the dynamic store functionality in the System Configuration framework. This is documented in System Configuration Programming Guidelines and System Configuration Framework Reference. For more information about network reachability, see Determining Reachability and Getting Connected in System Configuration Programming Guidelines.
Disk or Server Availability
If your daemon depends on the availability of a mounted volume (whether local or remote), you can determine the status of that volume using the Disk Arbitration framework. This is documented in Disk Arbitration Framework Reference.
Non-launchd Daemons
If your daemon has a dependency on a non-launchd
daemon, you must take additional care to ensure that your daemon works correctly if that non-launchd
daemon has not started when your daemon is started. The best way to do this is to include a loop at start time that checks to see if the non-launchd
daemon is running, and if not, sleeps for several seconds before checking again.
Be sure to set up handlers for SIGTERM
prior to this loop to ensure that you are able to properly shut down if the daemon you rely on never becomes available.
User Logins
In general, a daemon should not care whether a user is logged in, and user agents should be used to provide per-user functionality. However, in some cases, this may be useful.
To determine what user is logged in at the console, you can use the System Configuration framework, as described in Technical Q&A QA1133.
Kernel Extensions
If your daemon requires that a certain kernel extension be loaded prior to executing, you have two options: load it yourself, or wait for it to be loaded.
The daemon may manually request that an extension be loaded. To do this, run kextload
with the appropriate arguments using exec
or variants thereof. I/O Kit kernel extensions should not be loaded with kextload
; the I/O Kit will load them automatically when they are needed.
Note: The kextload
executable must be run as root in order to load extensions into the kernel. For security reasons, it is not a setuid executable. This means that your daemon must either be running as the root user or must include a helper binary that is setuid root in order to use kextload
to load a kernel extension.
Alternatively, our daemon may wait for a kernel service to be available. To do this, you should first register for service change notification. This is further documented in I/O Kit Framework Reference.
After registering for these notifications, you should check to see if the service is already available. By doing this after registering for notifications, you avoid waiting forever if the service becomes available between checking for availability and registering for the notification.
Note: In order for your kernel extension to be detected in a useful way, it must publish a node in the I/O registry to advertise the availability of its service. For I/O Kit drivers, this is usually handled by the I/O Kit family.
For other kernel extensions, you must explicitly register the service by publishing a nub, which must be an instance of IOService
.
For more information about I/O Kit services and matching, see IOKit Fundamentals, I/O Kit Framework Reference (user space reference), and Kernel Framework Reference (kernel space reference).
For More Information
The manual pages for launchd
and launchd.plist
are the two best sources for information about launchd
.
In addition, you can find a source daemon accompanying the launchd
source code (available from http://www.macosforge.org/). This daemon is also provided from the Mac Developer Library as the SampleD sample code project.
The Daemons and Agents technical note provides additional information about how launchd
daemons and agents work under the hood.
Finally, many Apple-provided daemons support launchd
. Their property list files can be found in /System/Library/LaunchDaemons
. Some of these daemons are also available as open source from http://www.opensource.apple.com/ or http://www.macosforge.org/.
Copyright © 2003, 2016 Apple Inc. All Rights Reserved. Terms of Use Privacy Policy Updated: 2016-09-13
Table of Contents
- 1 Unix-like
- 4 Windows
- 4.1 Native Windows compilation using MinGW or MinGW-w64
- 4.2 Microsoft Visual C++ or Intel C++ Compiler for Windows
1 Unix-like
Some parts of FFmpeg cannot be built with version 2.15 of the GNUassembler which is still provided by a few AMD64 distributions. Tomake sure your compiler really uses the required version of gasafter a binutils upgrade, run:
If not, then you should install a different compiler that has nohard-coded path to gas. In the worst case pass --disable-asm
to configure.
1.1 Advanced linking configuration
If you compiled FFmpeg libraries statically and you want to use them tobuild your own shared library, you may need to force PIC support (with--enable-pic
during FFmpeg configure) and add the following optionto your project LDFLAGS:
If your target platform requires position independent binaries, you shouldpass the correct linking flag (e.g. -pie
) to --extra-ldexeflags
.
1.2 BSD
BSD make will not build FFmpeg, you need to install and use GNU Make(gmake
).
1.3 (Open)Solaris
GNU Make is required to build FFmpeg, so you have to invoke (gmake
),standard Solaris Make will not work. When building with a non-c99 front-end(gcc, generic suncc) add either --extra-libs=/usr/lib/values-xpg6.o
or --extra-libs=/usr/lib/64/values-xpg6.o
to the configure optionssince the libc is not c99-compliant by default. The probes performed byconfigure may raise an exception leading to the death of configure itselfdue to a bug in the system shell. Simply invoke a different shell such asbash directly to work around this:
1.4 Darwin (Mac OS X, iPhone)
The toolchain provided with Xcode is sufficient to build the basicunaccelerated code.
Mac OS X on PowerPC or ARM (iPhone) requires a preprocessor fromhttps://github.com/FFmpeg/gas-preprocessor orhttps://github.com/yuvi/gas-preprocessor(currently outdated) to build the optimizedassembly functions. Put the Perl script somewherein your PATH, FFmpeg’s configure will pick it up automatically.
Mac OS X on amd64 and x86 requires nasm
to build most of theoptimized assembly functions. Fink,Gentoo Prefix,Homebrewor MacPorts can easily provide it.
2 DOS
Using a cross-compiler is preferred for various reasons.http://www.delorie.com/howto/djgpp/linux-x-djgpp.html
3 OS/2
Discouraged Workers Teen Version Mac Os High Sierra
For information about compiling FFmpeg on OS/2 seehttp://www.edm2.com/index.php/FFmpeg.
4 Windows
To get help and instructions for building FFmpeg under Windows, check outthe FFmpeg Windows Help Forum at http://ffmpeg.zeranoe.com/forum/.
4.1 Native Windows compilation using MinGW or MinGW-w64
FFmpeg can be built to run natively on Windows using the MinGW-w64toolchain. Install the latest versions of MSYS2 and MinGW-w64 fromhttp://msys2.github.io/ and/or http://mingw-w64.sourceforge.net/.You can find detailed installation instructions in the download section andthe FAQ.
Notes:
- Building for the MSYS environment is discouraged, MSYS2 provides a fullMinGW-w64 environment through mingw64_shell.bat ormingw32_shell.bat that should be used instead of the environmentprovided by msys2_shell.bat.
- Building using MSYS2 can be sped up by disabling implicit rules in theMakefile by calling
make -r
instead of plainmake
. Thisspeed up is close to non-existent for normal one-off builds and is onlynoticeable when running make for a second time (for example duringmake install
). - In order to compile FFplay, you must have the MinGW development libraryof SDL and
pkg-config
installed. - By using
./configure --enable-shared
when configuring FFmpeg,you can build the FFmpeg libraries (e.g. libavutil, libavcodec,libavformat) as DLLs.
4.1.1 Native Windows compilation using MSYS2
The MSYS2 MinGW-w64 environment provides ready to use toolchains and dependenciesthrough pacman
.
Make sure to use mingw64_shell.bat or mingw32_shell.bat to havethe correct MinGW-w64 environment. The default install provides shortcuts tothem under MinGW-w64 Win64 Shell
and MinGW-w64 Win32 Shell
.
To target 32 bits replace x86_64
with i686
in the command above.
4.2 Microsoft Visual C++ or Intel C++ Compiler for Windows
FFmpeg can be built with MSVC 2013 or later.
You will need the following prerequisites:
- NASM(Also available via MSYS2’s package manager.)
To set up a proper environment in MSYS2, you need to run msys_shell.bat
fromthe Visual Studio or Intel Compiler command prompt.
Place yasm.exe
somewhere in your PATH
.
Next, make sure any other headers and libs you want to use, such as zlib, arelocated in a spot that the compiler can see. Do so by modifying the LIB
and INCLUDE
environment variables to include the Windows-stylepaths to these directories. Alternatively, you can try to use the--extra-cflags
/--extra-ldflags
configure options.
Finally, run:
If you wish to compile shared libraries, add --enable-shared
to yourconfigure options. Note that due to the way MSVC and ICL handle DLL imports andexports, you cannot compile static and shared libraries at the same time, andenabling shared libraries will automatically disable the static ones.
Notes:
- If you wish to build with zlib support, you will have to grab a compatiblezlib binary from somewhere, with an MSVC import lib, or if you wish to linkstatically, you can follow the instructions below to build a compatible
zlib.lib
with MSVC. Regardless of which method you use, you must stillfollow step 3, or compilation will fail.- Grab the zlib sources.
- Edit
win32/Makefile.msc
so that it uses -MT instead of -MD, sincethis is how FFmpeg is built as well. - Edit
zconf.h
and remove its inclusion ofunistd.h
. This getserroneously included when building FFmpeg. - Run
nmake -f win32/Makefile.msc
. - Move
zlib.lib
,zconf.h
, andzlib.h
to somewhere MSVCcan see.
- FFmpeg has been tested with the following on i686 and x86_64:
- Visual Studio 2013 Pro and Express
- Intel Composer XE 2013
- Intel Composer XE 2013 SP1
Anything else is not officially supported.
4.2.1 Linking to FFmpeg with Microsoft Visual C++
If you plan to link with MSVC-built static libraries, you will needto make sure you have Runtime Library
set toMulti-threaded (/MT)
in your project’s settings.
You will need to define inline
to something MSVC understands:
Also note, that as stated in Microsoft Visual C++, you will needan MSVC-compatible inttypes.h.
If you plan on using import libraries created by dlltool, you mustset References
to No (/OPT:NOREF)
under the linker optimizationsettings, otherwise the resulting binaries will fail during runtime.This is not required when using import libraries generated by lib.exe
.This issue is reported upstream athttp://sourceware.org/bugzilla/show_bug.cgi?id=12633.
To create import libraries that work with the /OPT:REF
option(which is enabled by default in Release mode), follow these steps:
- Open the Visual Studio Command Prompt.
Alternatively, in a normal command line prompt, call vcvars32.batwhich sets up the environment variables for the Visual C++ tools(the standard location for this file is something likeC:Program Files (x86_Microsoft Visual Studio 10.0VCbinvcvars32.bat).
- Enter the bin directory where the created LIB and DLL filesare stored.
- Generate new import libraries with
lib.exe
:Replace
foo-version
andfoo
with the respective library names.
4.3 Cross compilation for Windows with Linux
You must use the MinGW cross compilation tools available athttp://www.mingw.org/.
Then configure FFmpeg with the following options:
(you can change the cross-prefix according to the prefix chosen for theMinGW tools).
Then you can easily test FFmpeg with Wine.
4.4 Compilation under Cygwin
Please use Cygwin 1.7.x as the obsolete 1.5.x Cygwin versions lackllrint() in its C library.
Install your Cygwin with all the 'Base' packages, plus thefollowing 'Devel' ones:
In order to run FATE you will also need the following 'Utils' packages:
If you want to build FFmpeg with additional libraries, download Cygwin'Devel' packages for Ogg and Vorbis from any Cygwin packages repository:
These library packages are only available fromCygwin Ports:
The recommendation for x264 is to build it from source, as it evolves tooquickly for Cygwin Ports to be up to date.
4.5 Crosscompilation for Windows under Cygwin
With Cygwin you can create Windows binaries that do not need the cygwin1.dll.
Just install your Cygwin as explained before, plus these additional'Devel' packages:
and add some special flags to your configure invocation.
Discouraged Workers Teen Version Mac Os Catalina
For a static build run
Discouraged Workers Teen Version Mac Os Download
and for a build with shared libraries
This document was generated on May 2, 2021 using makeinfo.
Hosting provided by telepoint.bg